# PromedeusLab

# HUMAN GROWTH DIFFERENTIATION FACTOR 15 ELISA

Cat. No.: PL1025

Enzyme Immunoassay for the quantitative determination of Growth differentiation factor 15 (GDF15) in human serum and plasma.

Growth differentiation factor 15 (GDF15) is a member of the TGFB superfamily whose expression is increased in response to cellular stress and disease as well as by metformin.1 Identified as a new heart-derived endocrine hormone that regulates body growth, GDF15 has a local cardioprotective role, presumably due to its autocrine/paracrine properties: antioxidative, anti-inflammatory, antiapoptotic. GDF15 expression is highly induced in cardiomyocytes after ischemia/reperfusion and in the heart within hours after myocardial infarction (MI). GDF15 may be a predictive biomarker of adverse cardiac events.<sup>2</sup> Available evidence also suggests that a substantial amount of GDF15 is secreted in various human cancers, such as ovarian cancer, prostate cancer, and breast cancer, among others.3

# Principle of of GDF15 ELISA

The microtiter plate is coated with the antibody specifically binding the Growth differentiation factor 15. The human serum or plasma is incubated in the plate with the capture antibody.

The specimen is washed out and the specifically bound protein is incubated with biotin-labelled detection antibody. Following another washing step, Streptavidin-HRP conjugate is added into the well. Unbound reagent is then washed out. Horseradish peroxidase (HRP) bound in the complex reacts with the chromogenic substrate (TMB) creating the blue colour. The reaction is stopped by addition of STOP solution ( $H_2SO_4$ ).

The absorbance values are measured at 450 nm (optionally 450/630 nm) and are proportional to the concentration of GDF15 in the specimen. The concentration of GDF15 in unknown samples is determined from the calibration curve which is created by plotting the absorbance values against the standard concentration values.

Laboratory technology with complex integration



Team of experts



Large portfolio



Authorized 24/7 service



Tailor-made solution

Let us know

Add 100 µL of Standards, diluted QCs and Samples to the wells

Incubate for 1 hour at 25 °C, shaking at 300 rpm

3-times wash the wells (350 µL/well)

Add 100  $\mu\text{L}$  of HRP-conjugated Antibody to the wells

Incubate for 1 hour at 25 °C, shaking at 300 rpm

3-times wash the wells (350  $\mu$ L/well)

Add 100  $\mu$ L of Substrate Solution to the wells

Incubate for 20 min in the dark at 25 °C, NO shaking

Add 100  $\mu$ L of Stop Solution to the wells

Read the signal at 450 nm (450/630 nm) within 15 min

#### Kit contents

| Item                                         | Qty.     |
|----------------------------------------------|----------|
| Antibody Coated Microtiter Plate             | 96 wells |
| Antibody-HRP Conjugate                       | 13 mL    |
| Master Standard (lyophilized)                | 1 vial   |
| Quality Control A (human serum, lyophilized) | 1 vial   |
| Quality Control B (human serum, lyophilized) | 1 vial   |
| Dilution Buffer                              | 2×13 mL  |
| Wash Buffer 15× conc.                        | 50 mL    |
| Substrate Solution                           | 13 mL    |
| STOP Solution                                | 13 mL    |

# Material required but not supplied

- 1. Glassware and test tubes.
- 2. Microtiter plate washer.
- 3. Precision pipettes (various volumes) with tips.
- 4. Orbital shaker.
- Microtiter plate reader capable of measuring absorbance at 450 nm or 450/630 nm with software for data generation.

# Warnings and precautions

- 1. For research use only.
- 2. For professional laboratory use.
- 3. The reagents with different lot numbers should not be mixed.
- 4. To prevent cross sample contamination, use disposable labware and pipette tips
- 5. To protect laboratory stuff, wear protective gloves and protective clothing
- 6. The substrate solution should remain colourless, keep it protected from light
- 7. The test should be performed at standard laboratory conditions (temperature  $25 \,^{\circ}\text{C} \pm 2 \,^{\circ}\text{C}$ ).

# Storage conditions

- 1. The kit must be stored at 2-8 °C.
- 2. The opened components can be stored for one week at 2-8 °C.

#### **Preparation of reagents**

- Use new pipette tip for pipetting different reagents and samples to prevent cross-contamination.
- All reagents and samples should be allowed to reach the temperature 25 °C ±2 °C.

# **Preparation of Standards**

Reconstitute lyophilized Human GDF15 Standard in Dilution Buffer, for the volume information see the Certificate of Analysis. Let it rehydrate for 15 min. The concentration of human GDF15 in Master Standard is 800 pg/mL.

# Prepare set of Standard solution as follows:

Use the Master Standard for serial dilution (as below). Mix each tube thoroughly before the next transfer. The Dilution Buffer serves as Blank.

|       | Volume of Standard               | Dilution<br>Buffer | Concentration |
|-------|----------------------------------|--------------------|---------------|
| Std1  | Standard 800 pg/mL (lyophilized) | See CofA           | 800 pg/mL     |
| Std2  | 300 µL of Std1                   | 300 µL             | 400 pg/mL     |
| Std3  | 300 µL of Std2                   | 300 µL             | 200 pg/mL     |
| Std4  | $300\mu L$ of Std3               | 300 µL             | 100 pg/mL     |
| Std5  | $300\mu L$ of Std4               | 300 µL             | 50 pg/mL      |
| Std6  | $300\mu L$ of Std5               | 300 µL             | 25 pg/mL      |
| Blank |                                  | 300 µL             | Opg/mL        |
|       |                                  |                    |               |

# **Preparation of Quality Control A and B**

Reconstitute the lyophilized human serum Quality Controls with deionized/distilled water, for the volume information see the Certificate of Analysis. Let the QCs rehydrate for 15 min and dilute them 1:10 in Dilution Buffer, prior to use, see Preparation of samples.

#### Preparation of Wash Buffer 1×

Prepare a working solution of Wash Buffer by adding 50 mL of Wash Buffer 15 × conc. to 700 mL of deionized/distilled water (d $H_2O$ ). Mix well. Store at 4 °C for two weeks or at -20 °C for long term storage.

# **Preparation of samples**

Human serum or plasma may be used with this assay. For long-term storage the samples should be frozen at minimum -70 °C. Lipemic or haemolytic samples may cause false results.

Recommended dilution of samples is 1:10 for healthy individuals, i.e., for singlets 20  $\mu$ L of sample + 180  $\mu$ L of Dilution Buffer, for duplicates 30  $\mu$ L of samples + 270  $\mu$ L of Dilution Buffer, respectively.

Recommended dilution of samples is 1:40 for individuals in condition in which is expected higher level of GDF15, i.e., for singlets 5  $\mu$ L of sample + 195  $\mu$ L of Dilution Buffer, for duplicates 10  $\mu$ L of samples + 390  $\mu$ L of Dilution Buffer, respectively.

Do not store the diluted samples.

#### **Assay procedure**

- 1. Prepare the reagents as described in the previous chapter.
- Pipette 100 µL of set of Standards, Quality
  Controls, diluted Samples and Dilution Buffer
  = Blank into each well. Incubate for 1 hour
  at 25 °C ±2 °C, shaking at 300 rpm.
- Wash the wells 3-times with 1× Wash Buffer (350 µL/well). When finished, tap the plate against the paper towel to remove the liquid completely.
- 4. Pipette  $100 \mu L$  of Biotin-labelled Antibody into each well. Incubate for 1 hour at  $25 \,^{\circ}C \pm 2 \,^{\circ}C$ , shaking at  $300 \, \text{rpm}$ .
- 5. Wash the wells as described in point 3.
- 6. Pipette 100  $\mu$ L of Streptavidin-HRP into each well. Incubate for 30 min at 25 °C ±2 °C, shaking at 300 rpm.
- 7. Wash the wells as described in point 3.

- 8. Pipette 100  $\mu$ L Substrate solution, incubate for 20 min at 25 °C ±2 °C. Avoid exposure to the light during this step.
- 9. Pipette  $100 \mu L$  of STOP solution.
- 10. Read the signal at 450 or 450/630 nm within 15 min.

#### **Performance characteristics**

Samples used in the tests were diluted 1:10 as recommended and assayed. The results are multiplied by the dilution factor.

#### 1. Sensitivity

The limit of detection, defined as a concentration of human GDF15 giving absorbance higher than absorbance of blank + 3 standard deviations, is better than 6.25 p/mL of sample.

#### 2. Precision

### Intra-assay

| Sample Mean (ng/mL) SD CV ( |  |
|-----------------------------|--|
| 1 1649 158 10               |  |
| 2 1696 54 3                 |  |

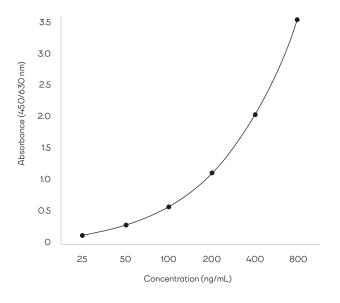
# Inter-assay (Run - to - run)

| Sample | Mean (ng/mL) | SD | CV (%) |
|--------|--------------|----|--------|
| 1      | 841          | 30 | 4      |
| 2      | 1604         | 61 | 4      |

#### 3. Accuracy

# Dilution linearity

| Sample | Dilution | Measured<br>concentration<br>(ng/mL) | Expected concentration (ng/mL) | Yield (%) |
|--------|----------|--------------------------------------|--------------------------------|-----------|
| 1      |          | 1818                                 |                                | -         |
|        | 2×       | 825                                  | 909                            | 91        |
|        | Ц×       | 415                                  | 454                            | 91        |
|        | 8×       | 186                                  | 227                            | 82        |
| 2      |          | 2871                                 | -                              | -         |
|        | 2×       | 1460                                 | 1436                           | 102       |
|        | Ц×       | 711                                  | 718                            | 99        |
|        | 8×       | 348                                  | 359                            | 97        |
|        |          |                                      |                                |           |


# Spiking Recovery

| Sample | Spike<br>(ng/mL) | Measured<br>concentration<br>(ng/mL) | Expected concentration (ng/mL) | Yield<br>(%) |
|--------|------------------|--------------------------------------|--------------------------------|--------------|
| 1      | -                | 33                                   | -                              | -            |
|        | 100              | 142                                  | 133                            | 107          |
|        | 50               | 89                                   | 83                             | 107          |
|        | 25               | 60                                   | 58                             | 103          |

# **Typical standard curve**

The standard curve needs to be measured in every test. Most of the microplate reader can automatically calculate the analyte concentration using 4-parameter algorithm or alternative functions to fit the standard points properly. The concentrations need to be multiplied by the dilution factor, either automatically by reader or manually.

#### Human GDF15 standard curve



#### Resources

- Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol. 2021 Oct;17(10):592-607. doi:10.1038/s41574-021-00529-7. Epub 2021 Aug 11. PMID: 34381196.
- Rochette L, Dogon G, Zeller M, Cottin Y, Vergely C. GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci. 2021 Aug 18;22(16):8889. doi:10.3390/ijms22168889. PMID: 34445593; PMCID: PMC8396208.
- Li S, Ma YM, Zheng PS, Zhang P. GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J Exp Clin Cancer Res. 2018 Apr 10;37(1):80. doi: 10.1186/s13046-018-0744-0. PMID: 29636108; PMCID: PMC5894198.